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Abstract 

A method is presented that attempts to exploit all the 
a priori available information in order to locate a 
fragment of known geometry in the unit cell. Whereas 
the orientation of the search model is determined by 
a conventional but highly automated real-space Pat- 
terson rotation search, its position in the cell is found 
by maximizing the weighted sum of the cosines of a 
small number of strong translation-sensitive triple- 
phase invariants, starting from random positions. A 
Patterson minimum function based on intermolecular 
vectors is calculated only for those solutions that do 
not give rise to intermolecular contacts shorter than 
a preset minimum. This procedure avoids the time- 
consuming refinement in Patterson space and should 
be especially efficient for large structures. Finally, the 
best solutions are sorted according to a figure of merit 
based upon the agreement with the Patterson func- 
tion, the triple-phase consistency and an R index 
involving Eobs and Ecalc. Tests with about 30 known 
structures, using search fragments taken from other 
published structures or from f0rce-field calculations, 
have indicated that this novel combination of Patter- 
son and direct methods is reliable and widely applic- 
able. A few selected examples demonstrate the power 
of the computer program PATSEE, which is compat- 
ible with SHELX84 and will be distributed together 
with it. PATSEE is valid and efficient for all space 
groups and imposes no limits on the number of atoms 
or data. The orientation search for a single fragment 
allows one additional degree of torsional freedom, 
and up to two fragments may be translated simul- 
taneously. 
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Introduction 

The choice of strategy for the solution of a crystal 
structure at atomic resolution is usually determined 
by the presence or absence of heavy atoms. Thus it 
is common practice to solve light-atom structures with 
direct methods and those containing heavy atoms 
with Patterson techniques. If this (very often straight- 
forward) strategy fails, it may be advisable to resort 
to the corresponding alternative method: direct 
methods may well reveal the positions of heavy atoms, 
and the Patterson function can be interpreted even 
for purely light-atom structures, such as those of 
organic molecules, provided that part of the 
molecular geometry is known. This so-called Patter- 
son search has been shown by various authors to be 
a powerful tool for solving difficult crystal structures; 
its great strength is that it employs chemical informa- 
tion directly, and so can compensate for mediocre 
precision and resolution of the X-ray data (Egert, 
1983, and references cited therein). Nevertheless, it 
is not nearly as popular as direct methods, which owe 
part of their success to automation and superior com- 
putational efficiency. In this paper we describe an 
attempt to combine the merits of both methods- in  a 
manner that is generally applicable, efficient, auto- 
matic, computer independent and easy to u se - and  
thus to exploit all the a priori available information 
in order to solve large problem structures. 

Preparation of the search 

There are a number of different methods of perform- 
ing a Patterson search, but they all fall into one of 
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two general categories depending upon whether they 
operate in direct (vector) or reciprocal space. 
Although the latter method is less transparent and 
flexible (for instance, the molecular boundary has to 
be a simple geometrical shape), it was chosen by most 
of the early authors probably because it does not 
require the storage of the Patterson function (Blow, 
1976). Nowadays, the existing main-frame computers 
permit fast access to sufficient memory, so that there 
is now no reason to perform a fragment search in 
reciprocal space (at least as far as 'small' molecules 
are concerned). Thus our Patterson search procedure, 
like the methods of Nordman (1966, 1980) and 
Hornstra (1970), operates in real space and is based 
on the magnitudes of the Patterson function at posi- 
tions corresponding to interatomic vectors. 

Generally, a Patterson search in vector space con- 
sists of the following stages: (1) definition of a search 
model; (2) calculation and storage of the Patterson 
function; (3) rotation search; and (4) translation 
search. It is a serial technique, with the last two stages 
crucially dependent on the accuracy of all preceding 
ones. Thus the first step is by no means trivial; this 
is especially true for a procedure like ours where the 
search fragments are taken as rigid and no model 
refinement is attempted (with the exception of one 
torsional degree of freedom between two rigid 
groups). Also, the models are not represented by a 
smooth electron density distribution, but are regarded 
as an ensemble of point atoms with weights (Z x 
s.o.f.)* so that, generally speaking, a small well- 
defined search model is more appropriate than a 
larger one containing several incorrect atoms. The 
model is defined by atomic coordinates in a given 
coordinate system; these will normally be either frac- 
tional (taken from a related crystal structure, very 
conveniently obtained from the Cambridge Crystallo- 
graphic Database) or Cartesian (e.g. from a force- 
field calculation). Temperature factors are completely 
ignored, but the weight of an atom may be modified 
by changing its site occupation factor. Atoms that are 
expected to have close contacts (hydrogen bonds etc.) 
or occupy special positions should be marked in order 
to avoid short distances between them being inter- 
preted as physically unreasonable. 

The asymmetric unit of the Patterson function 
is generated by the SHELX84 Fourier program 
(Sheldrick, 1985), and sampled at 51 ×51 × N grid 
points ( N  arbitrary). Since the order of Fourier 
summation is chosen so as to make the sampling as 
uniform as possible, the distance between neighbour- 
ing grid points is normally small enough to avoid 
time-consuming interpolation. For almost all pur- 
poses, we recommend using E × F  as coefficients; 
these lead to a sharper map than F 2 but generate 
fewer ripples than E 2. However, We do not remove 

* s.o.f. = site occupation factor. 

the origin as suggested by Nordman (1966). In order 
to keep the whole Patterson map in core (a prere- 
quisite for an efficient search procedure) it must be 
densely packed. A compromise is required between 
the accuracy of the stored Patterson values and the 
storage limitations. We decided to represent each grid 
value by a digit between 0 and 7 so that it can be 
stored in three bits of computer memory; cf the quite 
successful two-bit representation of Braun, Hornstra 
& Leenhouts (1969). The Patterson values are 
encoded according to seven test levels and care should 
be taken that the distribution is reasonably smooth 
(with the exception of the zero values, which include 
all regions where no vector density is found). If the 
user does not supply his own test levels, they are set 
such that the second one equals the median of the 
cumulative Patterson distribution, and the difference 
between two successive levels is about half the expec- 
ted height of the highest single vector calculated from 
the height of the origin peak (arbitrarily set to 999). 
Several Patterson values encoded in this way are 
combined into one (octal) number, which occupies 
one real word of computer memory. The number of 
points that can be combined depends on the word 
length and the unpacking (shifting and masking) 
operations required for retrieval of a specified digit 
within this number; for example, seven is optimum 
for most 32-bit machines. 

Rotation search 

The region around the origin of the Patterson function 
is dominated by intramolecular vectors, which 
depend on the orientation but not on the position of 
the fragment. Thus the full six-dimensional search 
can be split into two three-dimensional searches, a 
rotation and a translation search (depending on the 
space group, the latter may be of even lower 
dimensionality). 

Since it is most inconvenient to perform the rotation 
search using crystal coordinates, the known fragment 
is first placed in a Cartesian coordinate system with 
its centre located at the origin. The next step is to set 
up the intramolecular vector set to be used for the 
search, i.e. to express the model geometry (which 
should always be checked thoroughly) in the form of 
discrete vectors with associated weights. Of the 
N ( N - 1 ) / 2  intramolecular vectors, the short (d < 
2/~) and long (say d > 6/~) ones are immediately 
eliminated. Since the inner sphere around the Patter- 
son origin shows some vector density everywhere, the 
short vectors provide little angular discrimination and 
are normally not very useful for determining the 
orientation of the fragment. However, they may be 
important for molecules (e.g. those consisting of fused 
aromatic rings) that are characterized by a few short 
vectors with high weights. An upper limit for the 
vector length is also advisable because very long 
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vectors, though quite characteristic of the search 
model, suffer most from uncertainties in the geometry 
and could easily miss the corresponding maximum 
in the Patterson map. All pairs in the remaining vector 
list with ends closer than 0.4 A* are replaced by a 
weighted average vector with the combined weight. 
In order to save computing time, vectors with weights 
lower than 10% of the highest may be omitted; 
experience has shown that a small number of vectors 
with high weight is often more suitable than a large 
number of low-weight vectors (Nordman & Schilling, 
1970). At this stage, a comparison between the high- 
weight vectors and the origin-peak distances for the 
most prominent Patterson maxima should indicate 
whether or not the gross features of the search model 
are correct. 

Any orientation of a rigid fragment relative to a 
fixed coordinate system can be described by three 
angles corresponding to successive rotations about 
properly chosen axes.t The asymmetric unit of 
angular space depends on both the Laue group and 
the model symmetry (Tollin, Main & Rossmann, 
1966). In contrast to other Patterson search programs, 
which scan the respective range of angles by specify- 
ing rotation increments, we have chosen to generate 
random orientations without taking into account 
problem-specific equivalences between angle triplets; 
this is later taken care of by the 'equivalence test'. 
Apart from computational advantages, this strategy 
automatically recognizes all angular symmetry rela- 
tions (including non-linear ones) and makes it 
unnecessary to use a specific initial orientation of a 
symmetric model. The optimum number of orienta- 
tions to be tested depends on the size and the shape 
of the search fragment, the Laue group and the Patter- 
son grid intervals. We usually generate 10 000-60 000 
angle triplets, which corresponds to mean rotation 
increments of about 7°; this is normally sufficient for 
the coarse location of the maxima. 

For each orientation, the correlation between the 
rotated intramolecular vector set and the Patterson 
function is measured by a modified sum function; 
this seems to be the most apprqpriate criterion for 
distinguishing correct from false solutions (Hornstra, 
1970). Each vector is thus transformed to the asym- 
metric unit of Patterson space, whereupon its weight 
w~ is compared with the nearest Patterson grid value 
P~. As a figure of merit, we take the average of the, 
say, 30% worst-fitting vectors, i.e. those with lowest 
Pi/ w,: 

RFOM = -  - -  (n -~ 0.3 × ntotal). 
n i = l  wi  

Table 1. Rotation search procedure 

1. Compilation of  intramolecular vector set 
2. Generation of  random orientations 
3. Retrieval of  Patterson grid values and calculation of RFOM 
4. Overlap test 
5. Equivalence test 
6. Sorting of solutions according to RFOM 
7. Refinement of  best solutions 

RFOM is related to the 'weighted minimum average', 
n p,  n 

~=~ ~/~=~ w~, used by Nordman (1980) and, 
depending on n, resembles either the sum or the 
minimum function. 

Before an orientation with promising RFOM is 
sorted into a short list of best solutions, it has to pass 
two tests. The 'overlap test' ensures that no close 
interatomic contacts (say d < 2 A )  arise from the 
application of the lattice translations present (except 
for distances between atoms previously marked) and 
the 'equivalence test' compares the orientation in 
question with those already stored. The latter test 
does not make use of angular relations but is instead 
based upon distances between equivalent atoms. All 
symmetry elements of the Laue group that correspond 
to proper rotations are successively applied to the 
solutions in the list; if the search model is racemic 
improper ones may also have to be considered. Two 
orientations are regarded as similar when all ~pairs 
of equivalent atoms are closer than, say, 0.6 ~ ;  in 
that case only the better one is kept. Since these two 
tests are necessary only for orientations with a larger 
RFOM than the worst one in the list of 'best' solu- 
tions, they are less often applied after a number of 
good solutions have already been found. Thus the 
computing time for the rotation search increases only 
slowly with the number of orientations tested. 

In order to improve the performance of the sub- 
sequent translation search, it is worthwhile refining 
the best solutions by a restricted rotation search. The 
maximum within each promising region of angular 
space is found by testing up to 1000 additional ran- 
dom points, which corresponds to a mean rotation 
increment of less than 2 ° . 

If the search model has one torsional degree of 
freedom the whole procedure outlined in Table 1 is 
repeated for each distinct geometry (conveniently 
defined by a range of possible torsion angles and an 
appropriate increment), in which case a merged list 
of best solutions is set up. At the end of the rotation 
search, a small number of promising orientations are 
passed over to the translation search. It is our 
experience that the correct one is usually present 
among the best two or three for reasonably sized 
fragments ( p 2  _~ 0.2). 

* This value is increased for low-resolution Patterson maps. 
tThe re  are various definitions of the Eulerian angles. For com- 

putational reasons, we prefer successive rotations about the A, B 
and C axes, in that order. 

Translation search 

In procedures to position a fragment of k n o w n ,  
geometry in the unit cell, the translation search has 
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usually proved to be less reliable than the rotation 
search. We restrict ourselves to Patterson space, this 
is because the 'cross' vectors used to locate a fragment 
with respect to the origin suffer from errors in both 
the model geometry and orientation amplified by the 
symmetry elements; in addition, model vectors with 
very high weight are less likely than in the rotation 
search. In order to obtain atomic positions accurate 
enough for the subsequent structure expansion or 
refinement, either a fine search grid or some optimi- 
zation of promising solutions is necessary. Thus, if a 
sum or minimum function is used, the time for the 
translation search rises rapidly with the complexity 
of the structure. Furthermore, time-consuming inter- 
polation procedures can hardly be avoided. 

The calculated phases, in contrast to the way in 
which the Patterson function must normally be stored, 
are a continuous function of the atomic coordinates. 
When a fragment is moved through the unit cell 
keeping its orientation fixed: 

Fh = F ° exp 27rib. Ar 

since all atomic displacements Ar are the same. So 
the scattering contributions from the atoms of the 
search model have to be summed only once for each 
orientation and reflection to yield a structure factor 
F ° for the starting position; subsequently, the struc- 
ture factor Fh for any position is readily obtained by 
multiplication with a simple phase factor. For the 
true structure, the individual phases of the strongest 
reflections are linked by various statistical phase rela- 
tions; amongst these, the three-phase structure 
invariants have proved to be especially useful: 

(~h-~ t" (~k'~-. ~0_h_k ~ 0.  

The search fragment is usually incomplete and may 
also be not very accurate. Nevertheless, if its scatter- 
ing power is significant, the triple-phase relations 
should hold at least approximately for the correct 
solution, in the sense that the distribution of the phase 
sums is far from being random. 

These considerations led us to the development of 
a novel strategy for a Patterson translation search, 
which, as far as we know, for the first time fully 
exploits in an integrated fashion the information con- 
tained in the sharpened Patterson function, the three- 
phase structure invariants and allowed intermolecular 
distances (Table 2). In short, we have chosen the 
optimization of a weighted sum of cosine invariants 
as our refinement procedure, with the Patterson corre- 
lation and an R index as additional figures of merit, 
and the minimum intermolecular distance as a pos- 
sible rejection criterion. This method is computa- 
tionally efficient, especially for larger structures, 
because the refinement is based on phase relations 
derived from a relatively smal l  number of large E 
magnitudes. Only when an acceptable solu- 

Table 2. Translation search procedure 

1. Search for most probable triple-phase relations 
2. Calculation of E ° for given orientation • 
3. Selection of suitable phase relations 
4. Generation of random positions 
5. Preliminary distance test 
6..Refinement of fragment positions 
7. Final distance test 
8. Retrieval of Patterson grid values and calculation of TFOM 
9. Sorting of independen t solutions according to CFOM 

tion has been found by this 'direct search' is it 
necessary to calculate the time-consuming Patterson 
correlation. A less obvious advantage is that the 
dependence of the phase angles on small coordinate 
shifts is relatively linear, i.e. the sum of cosines is an 
approximately quadratic function, which results in 
efficient refinement. 

Since, in order to save computing time, relatively 
few phase relations are employed for the refinement, 
they have to be selected carefully. Initially the most 
probable three-phase structure invariants are found 
by searching a list of, for example, 200 reflections 
with largest E values generated by SHELX84  
together with, the Patterson map. Normally about 100 
phase relations linking an approximately equal num- 
ber of E rn'agnitudes are sufficient. However, not all 
of these are used simultaneously because it would 
not be sensible to employ E magnitudes to which the 
oriented search model does not contribute sig- 
nificantly. Assuming N* independent fragments with 
random positions, their relative contributions to the 
E magnitudes are given by 

i=1 h,calc / / Eh,obs  . t  

Accordingly, all triple-phase relations are ignored for 
which QhQkQ-h-k is less than, say, 80% of its average 
value for the orientation in question. Thus only the 
40-60 most probable and translation-sensitive three- 
phase structure invariants are actually used for a 
translation search. It is advisable to apply a 20 limit 
to the E values before searching for phase relations, 
since high-order reflections may be influenced con- 
siderably by errors in the model. However, if the 
cut-off is too severe, the accuracy of the phase-refine- 
ment procedure suffers because of the occurrence of 
broad and shallow maxima. It seems that a nominal 
resolution of about 1 ~ is the best compromise; this 
does not necessarily mean that structures with a lower 
resolution cannot be solved by this method. 

The asymmetric unit of translation search and thus 
the number and scan range of parameters are uniquely 
defined by the Cheshire groups (Hirshfeld, 1968). 

* 1 <- N-< 3 for  the p rocedure  presented here. 
t The  average value o f  Qh is usually a max imum for  the correct  

or ientat ion but  is not  very sensitive to errors. 
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Following these rules, random positions are gener- 
ated for the rotated search fragment(s). It is our 
experience that the triple-phase refinement is well 
able to home in on fragments starting about 0.5 
away from their true positions. This means that at 
least one trial per cubic Angstr6m is necessary in 
order to have a good chance of locating one search 
model correctly. Since the number of trials rises as a 
high power of the number of independent fragments, 
it is unreasonable to search for more than two simul- 
taneously. However, any number of fixed fragments 
(obtained from a previous search or a heavy-atom 
Patterson interpretation, for example) may be added 
and, in fact, are quite valuable provided they are 
correct.* 

Taking the limited range of the subsequent refine- 
ment into account, only those random positions that 
are fairly close to physically reasonable solutions are 
worth refining; thus all positions that give rise to very 
short intermolecular distances (say d < 1.8 A) are 
immediately rejected. The refinement procedure con- 
sists of two cycles during which the translation para- 
meters are refined one after another by optimizing 

EhEkE-,-k COS (~0h+ ~0k+ ~-h-k) 
TPRSUM - 

~. EhEk E_h_k 

where the two sums are taken over all selected three- 
phase structure invariants. TPRSUM is expected to 
be large and positive for the correct solution (-1  <- 
TPRSUM < - 1). The fragment is moved stepwise 
through the cell until a point is found with larger 
TPRSUM than its neighbours. The coordinates of the 
maximum are then estimated by parabolic interpola- 
tion. If TPRSUM > 0 after the first cycle, the initial 
step size of, say, one quarter of the nominal resolution 

(to about 0.05/~) in of the E values is reduced by 3 
order to locate the fragment more accurately. At the 
end of the second cycle, only positions with 
T P R S U M > 0 . 2 5  (approximately corresponding to 
~h + (pk+ ~_h_k<75 °) are regarded as possible solu- 
tions and tested again for short contacts. This time 
the rejection criterion is more strict (say d < 2.4 A) 
as the atom positions are final (but some tolerance 
for model errors has to be allowed for). 

For solutions that have survived all these tests, the 
correlation between the Patterson function and the 
intermolecular vector set is examined by comparing 
the weight of each vector with the nearest grid value. 
The fit is measured by (of. RFOM) 

TFOM = -  - -  (n --= 0.2 x ntota 0. 
n i = l  wi  

The vector fraction to be used for TFOM (or RFOM) 

should be increased for bad or very small models. A 
small number of 'best' solutions (according to both 
TPRSUM and TFOM) are stored provided that they 
pass various tests for possible equivalence (allowed 
origin shift or lattice translation). Although the true 
position of the search fragment is usually recogniz- 
able at this stage, an R index based on E magnitudes 
has proved very useful in distinguishing further 
between correct and false solutions. It is defined as: 

R E = 
E {IEobsl--lEca,cl/P} 

~ ]Eobs] 

since 2 2 2 p2 Ecalc=p Eobs ( = fractional scattering power 
of the search model). Only positive contributions to 
the numerator are considered, i.e. if IEcaJcl is larger 
than its expected value, complete agreement between 
fragment position and experiment is assumed. 
Finally, the solutions are sorted according to a com- 
bined figure of merit: 

CFOM = - -  
0.2 

RE 
x T F O M  xTPRSUM 1/2 

In this expression, TPRSUM is given lower weight 
because it was the quantity optimized. If a rotation 
search preceded the translation search, TFOM is 
replaced by ( R F O M + T F O M ) / 2 .  If Re is less than 
0.05 it is reset to 0.05, so that it does not dominate 
CFOM for very small fragments. For all solutions 
printed, a Patterson sum function is calculated as a 
measure of fit/misfit for each individual atom, taking 
all vectors (intra- and intermolecular) into account; 
this enables identification of possible wrong atoms 
and thus model correction. 

The procedure described differs from other Patter- 
son translation functions (Nordman, 1966; Hornstra, 
1970; Doesburg & Beurskens, 1983) in that the orien- 
ted model is placed with respect to all symmetry 
elements of the space group simultaneously. Tests 
with known structures have indicated that this routine 
is able to locate very large fragments (of more than 
300 atoms), in which case the distance tests already 
preclude the majority of trial positions, as well as 
single atoms even when the latter are not very heavy 
(e.g. P or S in large organic structures). Above all, 
the variety of different criteria employed to judge 
solutions should make this combination of Patterson 
and direct methods a powerful structure-solving 
strategy, if chemical information is available. One 
would expect that a position that is in agreement 
simultaneously with packing criteria (dmi,), the Pat- 
terson function (TFOM), triple-phase relations 
(TPRSUM) and E values (RE) is probably correct, 
and our experience shows that this is indeed the case. 

* Since known atoms uniquely define the origin of the unit cell 
it is sometimes more economic not to include them, if their size 
or scattering power is small and the asymmetric unit for the search 
much smaller (e.g. only one or two dimensional) without them. 

Features  o f  the  program PATSEE 

The procedures outlined have been implemented as 
a computer program called PATSEE, which is valid 
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Molecular formula 
Space group 
Z 
Model size (atoms) 
Scattering fraction 
Number of  rotation trials 
R F O M f / R F O M  c 
Number  of translation trials 
T P R S U M f / T P R S U M  ¢ 
T F O M f / T F O M  ~ 
REC/R~ 
C F O M J / C F O M  c 
Computer  time (min)* 
Computer  time (min) for 

direct methods*t  

Table 3. Data on the solution of  five test structures with PA TSEE 

c re fe r s  to  t he  co r r ec t ,  f to  t he  h i g h e s t - r a n k e d  w r o n g  s o l u t i o n .  

L A C  1 S U O A  T P H  M U N I C H  1 

C37H49N307 C28H38019  C24H20N2 C20H16 
P21 P212121 C2221 C2 

2 4 12 8 
23 I 1 13 20 
0.41 0.21 0.30 0.44 

40 000 25 000 10 x25 000 40 000 
0.68 0.92 0-97 0.48 
100 500 700 300 
1.00 1.17 1.17 " 0.98 
0.63 1.05 0.75 0.82 
0"76 0.93 0.80 0-74 
0.57 0.90 0-76 0.67 
10 5 24 8 

15 200 20 60 

* On a UNIVAC 1100/83. 
t Using SHELX84. 

A Z E T  

C21H16C1NO 
Pea21 

8 
2 

0.10 

50O 
1.06 
0.93 
0.79 
0"67 

7 

10 

-and efficient for all space groups in all settings. Since 
it is written in a simple subset of Fortran it may be 
run without significant alteration on a wide range of 
computers, provided that sufficient memory (at least 
40K words) may be addressed directly and that the 
word length is at least 32 bits. The program has been 
designed to be fully automatic, but the default settings 
may easily be changed by experienced users. The 
rotation search can find the orientation of a fragment 
of any size and allows one torsional degree of free- 
dom. The translation search may locate up to two 
independent search models of any size (including 
single atoms), taking into account known atoms at 
fixed positions, if any. Since the program is compat- 
ible with SHELX84 ,  convenient facilities exist for 
the generation of the Patterson function before, and 
the structure expansion after, the fragment search. 
PATSEE is available on request and will be dis- 
tributed together with SHELX84.  

Test structures 

The program has already been tested on about 30 
known structures of different size and complexity, 
using fragments taken from related structures in the 
Cambridge Crystallographic Database or calculated 
by force-field methods. In all cases the best solution 
on the basis of the combined figure of merit could 
easily be expanded by tangent expansion and Fourier 
recycling to give the complete structure. The results 
for five test structures are summarized in Table 3. 
They all present difficulties in direct methods (three 
of them were originally solved by Patterson search) 
and will be briefly discussed in order to illustrate the 
range of possible applications for PATSEE. Apart 
from some minor modifications the default param- 
eters were used throughout. 

LAC1, a steroidal lactone, was ideally suited to 
Patterson search since a large and reliable model was 
available from the crystal structure of a 

diastereoisomer (Egert, Cruse & Kennard, 1983). 
Indeed, the solution was straightforward, as indicated 
by the convincing figures of merit. Also the structure 
of sucrose octaacetate (SUOA) (Oliver & Strickland, 
1984) did not cause any problems, although the small 
size of the search model taken from the structure of 
sucrose (Hanson, Sieker & Jensen, 1973) resulted in 
less clear-cut figures of merit (but, on the other hand, 
in a very rapid structure determination). The problem 
with tetraphenylhydrazine (TPH) (Hoekstra, Vos, 
Braun & Hornstra, 1975) was that the largest rigid 
fragment consists of only seven planar atoms. There- 
fore an extended search model Ph-N-Ph  comprising 
one torsional degree of freedom was constructed. By 
specifying a suitable range (0-90 °) of torsion angles 
and an increment ( 10 °) altogether ten geometries were 
tested. Since the short intramolecular vectors were 
expected to be important due to their high weights 
they were retained in this particular case. Further- 
more, the N atom and its nearest neighbours were 
marked in order to locate the molecule on the two- 
fold axis; otherwise the distance tests would have 
rejected the correct solution. For the structure deter- 
mination of 9,10,11,12-dibenzopentacyclo- 
[6.2.2.02'6.02'7.03'7]dodeca-9,11 -diene (MUNICH 1 ) 
(Szeimies-Seebach, Harnisch, Szeimies, Van 
Meerssche, Germain & Declercq, 1978) no suitable 
model was at hand. We therefore calculated the 
molecular geometry by the force-field program P I M M  
(Lindner, 1974) and used it as input for PATSEE. 
Since there are two independent molecules with mm2 
symmetry, eight distinct orientations could lead to a 
correct solution. Indeed there were just eight positions 
with excellent figures of merit-al l  of them correct! 
This example clearly demonstrates how fragment 
search and force-field methods can be successfully 
combined (see also Egert, 1983). 

If the known fragment consists of a single 'heavy' 
atom its orientation is of course always correct and 
a translation search with PATSEE should reveal its 
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position. This strategy was employed for the straight- 
forward structure solution of 3-chloro-l,3,4- 
triphenylazetidin-2-one (AZET) (Colens, Declercq, 
Germain, Putzeys & Van Meerssche, 1974) with two 
CI atoms at arbitrary starting positions (for example, 
both placed at the origin). For such a search, a con- 
siderable amount of computing time may be saved 
by specifying a proper value for the allowed inter- 
molecular distance (e.g. for metal complexes) ; other- 
wise the distance tests could be rather ineffective. It 
may also be useful to calculate CFOM without 
TPRSUM (a PATSEE option) in order to give 
increased weight to TFOM, which is very reliable in 
such cases. 

The values for the figures of merit show that RFOM, 
TFOM and Re together are strongly indicative of the 
correct solution. TPRSUM is often only a local 
maximum but it enables the rapid location of the 
search fragment. All test examples (not only the five 
discussed here) confirm that PATSEE is reliable and 
widely applicable. In terms of computing times, it is 
also competitive with direct methods; under favour- 
able circumstances (see SUOA and MUNICH1)  it 
can even prove more economical. In any case, PAT- 
SEE offers a powerful alternative if chemical infor- 
mation is available. 
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Abstract 

The previously formulated new approach to the struc- 
ture analysis of a crystal based on the profound 
analogy between the problem of determination of 
thermodynamic equilibrium in statistical mechanics 
and the optimization problem for a function of many 
variables [Khachaturyan, Semenovskaya & Vain- 
shtein (1979). Soy. Phys. Crystallogr. 24, 519-524; 
(1981). Acta Crysr A37, 742-754] is developed. In 

this approach, a crystal structure is determined by 
the equilibrium low-temperature state of a model 
non-ideal gas composed of the atoms within a crystal 
unit cell, the unit cell and the R factor being regarded 
as a vessel and an interatomic interaction Hamil- 
tonian, respectively. In contrast to the above cited 
papers, the low-temperature equilibrium state is 
found by means of the Monte Carlo sampling scheme 
usually utilized in statistical mechanics applications. 
The main advantage of such a treatment is that the 
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